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On the Thermal Stresses in a Finite Circular Cylinder* 
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S U M M A R Y  
A solution is presented for the determination of thermal stresses in a finite cylinder heated axisymmetrically over tile 
curved surface. The solution is obtained by constructing the thermoelastic displacement potential and the biharmonic 
Love function to satisfy all the boundary conditions. It considers the steady state stresses as well as the transient 
stresses. 

1. Introduction 

Thermal stresses are of vital concern in many design problems of engineering. In the literature, 
writings on thermal stresses in a cylinder have been abundant. Many authors [1, 2, 3, 6, 7, 12, 14] 
have given solutions for thermal stresses in an infinite cylinder with particular thermal boundary 
conditions. When the solution obtained for an infinite cylinder is used to determine thermal 
stresses in a finite cylinder, the stresses at the end surfaces usually are only self-equilibrating 
instead of vanishing. Aiming to eliminate these non-vanishing end stresses, quite a few authors 
[4, 5, 9, 10] have considered the end problem of a finite cylinder with self-equilibrating end 
stresses in isothermal elasticity. 

A direct and more general solution is expounded here for the determination of thermal 
stresses in a finite cylinder. The solution has been formulated for a hollow cylinder and takes 
into account both the transient and the steady state stresses. The solution consists of two parts : 
the thermoelastic displacement potential, which is a particular solution; and the biharmonic 
Love function, which is the homogeneous solution. They combine to satisfy all the boundary 
conditions. 

2. Basic Equations 

The cylindrical coordinate system (r, 0, z) will be used as the reference frame. The inner radius 
of the cylinder is a, the outer radius b, and the height 2h. The end surfaces are at z = +_ h. Because 
of axial symmetry, all the equations will be independent of the coordinate 0. 

The temperature distribution T(r, z, t) is governed by the equation of heat conduction in 
a solid body as the following: 

1 
V 2 T =  Tt (1) 

Z 

where Z is the coefficient of diffusivity and 

92 [ 0 92 

V2--- 0~7~.2 + - + - -  1- ~ & 2 -  

The  displacement field (u, w) is governed by the Navier displacement equations 

U,r ~- -- -~ W z 
u r ' ,, 2(1 +v) 

V2u r 5 + 1 - 2 v  - 1 - 2 v  aT'r (2a) 

* Based on a doctoral thesis in applied mechanics submitted by the first author to Kansas State University, Manhattan, 
Kansas. 
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( u ) 
u ~ + - +  w~ 2 ( l + v )  

' r ' ,z _ a T :  (2b) 
VZw + 1 - 2 v  1 - 2 v  ' ' 

where v is the Poisson ratio and :~ the coefficient of thermal expansion. 
A particular solution of (2) is represented by the thermoelastic displacement potential q) 

satisfying ([1 1]): 

W 2 ~) = k T  (3) 

where k =  ~(1 + v) / (1-  v). The homogeneous solution of (2), i.e., the solution of (2) when the 
right-hand sides are zero, will be represented by the Love function T satisfying 

V 2 V  2 ~ = 0 .  (4) 

The functions ~ and 7/shall be so constructed that they combine to satisfy all the boundary 
conditions and thus completely define the displacement field. Since the stresses alj will be 
specified on the boundary, they need to be expressed in terms of q) and T and can be derived, 
respectively, from 

1 ~b,z t rYrr = - 2 G ( r  ~b,r + 

600 = - 2 G  (q~,,r + q),:z) (5) 

6rz = - 2Gcb,rz 
and 

art = 2G [vV 2 7 j - ~ u  ],z 

[ 11 aoo=2G v V 2 7 / -  r T ~  
,z 

G = 2 e  

with G the modulus of rigidity. 

3. So lu t ion  o f  the H e a t  C o n d u c t i o n  Equat ion  

The thermal boundary conditions are (with ~, = n~/h and H(t) the unit step function)- 

[ T : H ( t ) , ~  Tin cos + T  at r : a  
L n 1 

T = H ( t ) [ , ~ I  ~ T ~ 1 7 6 1 7 6 1 7 6  at r = b  

0T 
- 0 .  at z = + _ h .  

0z 

(7) 

The initial temperature of the cylinder is assumed to zero, i.e., 

T = 0  at t = 0 .  

The solution of (1) satisfying (7) and (8) can be shown to be 

T = T r (r) + T' (r, z) + T"(r, z, t ) .  

(s) 

(9) 
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Here 
log (b/r) 

re(r) = TO + (Ti~ - r~ log (b/a) 

and 

r '  (r, z) = ~ [ { W~. K o (~. b) - r ~ K o (c% a)} I o (~. r) 
n = l  

+ {TOlo(a.a) - T~io(a.b)}Ko(e.r)] cos c%z 
A,, 

is the steady-state temperature distr ibution; 

~ {T"J~176 T"(r, z, t) = ~fi~exp [ - ( f i~+a2 )Xt ]  i o 
2 2 2 2 . =1 .,=1 (tim + ~.) {Jo (tim a) - Jo (tim h)} 

x {Jo(flm r) Vo(flma) - Yo(flmr)Jo(flma)} Jo(fi,.b)cos ~.z 

is the transient temperature variation; the tim are the roots of 

Jo (bx) I7o (ax)-  Yo (bx) Jo (ax) = 0 
and 

A. = Io (e. a) K o (~. b ) -  I o (~. b) K o (% a).  

4. Stresses Due to the Steady-State Temperature Distribution 

The stress boundary  conditions are 

a r z  = 0 a =  = 0 

a rz  = 0 a r t  = 0 

at z =  _+h 

at r = a  

at r = b  

When T in (3) is T'(r, z) of (10b), the function ~b may have the form 

eb' k L [L"Ii(~ M . K I ( ~ . r ) ]  r c o s ~ . z  
= 2.=1 L /o (~.b) + K o (c%a) ] c~. 

where 

L. - I~ {T~Ko(a.b ) -  T~ Ko(c%a) } 
A. 

M. - Ko (a. a) { TO Io (0% a) - Ti. I o (a. h) }. 
A. 

The corresponding stresses are, from (5), 

@rr=-Gk  n=l ~" [ ~ L n  {io(O~nr)_o~nrll(~nr)} 

M. 
Ko(a.a) 

') 
.=1 1_ /o(c~.b) o ( .  ) J 

(10a) 

(10b) 

(11) 

(12) 

(13) 

(14) 

(15) 
(16) 

(17) 

(18) 
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ffoo = -Gk ,=1 ~' I~L" {2io(%r) +c~"rI1 (C~nr) } 

M. cos .z 
Ko(~.a) 

ffrz = -Gk ~ F L"I~ MnK~ 
.=IL Io(c~.b) Ko(~,a ) ]~.rsinc~,z. (19) 

The temperature variation TO(r) is due to the difference in the mean temperatures of the 
outer and the inner surfaces. Stresses corresponding to TC(r) are from [13]. 

a2 (1 be Gk(Ti~176 ( b e  - ~ ) l o g ( ~ ) ]  
#rr - log (b/a) a 2) 

a2 (1 b2~lo ( b ~  G k ( T ~ 1 7 6 1 7 6  (b 2 r 2 ] g\a]_l 800- log(b/a) -a  2) + (20) 

Gk(Ti~ T ~  log!  2a  2 
(b2_a2) l~ 

It may be observed that the stresses given by (19) and (20) satisfy only the first condition of 
(14). Then it is necessary to construct a ~P function so that the remaining boundary conditions 
can be fulfilled. The 7 ~ function may have the following form: 

~J' = ~ [An tPln + Bn ~zn + Cn tl-tan + Gk tIJon ] . (21) .=1 
The functions 7Jm, in (21) are given by 

~1 .=  z c o s h 2 n z -  2. + hcoth2nh sinh2.z 2 2. cosh 2.h 

~P2n = [{ re, (%r) - (  2(lc~.-v) + b ~l (enb) ] )I~ }/I1 (~nb) 

I I n {  (2( l - -v)  Ko(c~.b)) }1 sin C~nZ 
+ Kl(c~na~ ) rKl(c~nr ) + % b Ka(~.b ) Ko(~. r) an2 

(22) 

and 

{ (2,1_v, + rKl(c~,r) + a 

- - +  
"1 t~. a) / 

K~ ) Ko(%r) } /Kl (c~,a)l Sin ~"z 
K l ( O~n T~) O~2n 

7 % , = [ ~ { r l l ( ~ , r  ) 2( l -v )  Io(~.r) } + M. r K  1 
Ko 

2(1-v) , , )qsin C~nZ 

where 
Fo(2.r) = Jo(2nr)+#, Yo(2,r) 

(23) 
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Fin = aI~ (~" a)/I, (a. b) -  bI o (% b) 11 (c~. a)/I~ (c~. b) 
aK o (~. a)/K , (~. a) - b Ko (~. b)/ K1 (~. b) 

F. = b Ko(e.h)/Kl(~.a)-aKo(%a) K1 (e.b)/K~ (a.a) (24) 
h I o (~. h)/I, (a. h) - a I o (~. a)/I~ (~. a) 

The 2. are the roots of 

J, (2a) Y, (2b)-  J1 (2b) Y1 (2a) = O, (25) 
and the/~, are given by - J1 (2.a)/Y1 (2.a) or - J, (2.b)/Y1 (2.b). 

Substitution from (21) into (6) will yield a set of stresses corresponding to 7 ~'. This set of 
stresses will be denoted by g-u" Then the total steady-state stresses are obtained as 

a'ij = 8i j  ~- 6 i j -~  ~i j  " (26) 

It is now noted that a'~ will vanish on all boundaries because of the way with which ~' has 
been constructed. Thus only three conditions, i.e., the second equations of (14)-(16), remain to 
be satisfied. Applying the boundary conditions a',~(a, z)=0 and taking the finite Fourier 
transformation of the resulting equation will eventually lead to 

P.mFo(2.a)Am + Q~ B. + R~ C. 
m = l  

2Gk(1-v)[ L. M. K~(=.a)l n= 1,2,3, (27) 
- c~.a J o o ( ~  I1 ( ~ . a )  + Ko(%,a--) . . . .  

where 
P.m - ( -  1)" 42m e"2 

2 2 2  h(2m+e.) tanh2mh 

Q~ I~176 c~,,a a,(a,,b)] J/ 
{ (  Ko(%b)~Ko(c~.a ) 2(1-v)  b Ko,ct.b) } 

- i~~ 1 -~ .h  I':l(~.b)/t':l(~.a) + ~.a + ~.a a K~(~.b) 

F. I2(~.a) 2 v) Ii(~.a) c~.a+~.a KZ(%a) 
R~ - 11 (~.b) %a 11 (c~.a) ~.a + 

Similarly, the boundary condition o-',~(b, z)=0 will yield 

P.mFo(2mb) Am+Q.B.+ R.C.  
r n = l  

2(1 -v)  

a n a 

2(1-~)~k [ L. 
~.b ~ ~l(~.b) + - -  

(2s) 

M. q 
Kl(~nb)[ n = 1, 2, 3 . . . .  (29) 

Ko(a.a) A 
where 

{ (  ~.~ ) K2(c~"b) I Q. = %b I2(e"b) 2( l -v )  Fin ~.b + 2 v) K t ( a . b ) _ % b _ _  
I~(a.b) a . b -  ~ - ~ - -  K,(a.a----) Kl(a.b ) 

( Io(a.a)'~Io(a.b ) 2 ( l - v )  a Io(a.a) [ 
R . = F ,  l + ~ . a  . . . .  %b (30) 

Ix(c~.a))ll(a.b) c~.b b I1 (c~.a) J 

- { % b K t ( % b ) + (  1 -  -~ t~Z~.~)K~ +(2( l~-v)  a ~ K l ( a . b ) I / K l ( ~ . a )  
a 

Finally, setting a'~z (r, • h) of (26) to zero and taking the finite Bessel Fourier transformation of 
the resulting equation will lead to 
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1 + sinh22"hJ A,.+ [Qm.B,+R,.,C.](-1) "= 9m 

where 

Q",= ~,I~.+ - b  

+ n.I .KL- - - + b  
a n 1~ 1 [an O) / ) /  

and 

R"n~-]'n{O~nlln-~( 2-~na~lOnf/II(~nb)l ( na)J i f -  

m = 1, 2, 3 . . . .  (31) 

(32) 

4Gk(Tio - T ~ {Fo(2mb)- Fo(2,.a) } 
g,. = -'2.,2 log (b/a){bZF~(2,.b)-a2Fg(2ma)} (33) 

The o 1 o 1 I,.., I,.., K,.., and K,.. in (32) are given in Appendix 1. 
Equations (27), (29), and (31) are the necessary relations to be satisfied by the unknown 

constants Am, B., and C. such that all the stress boundary conditions may be completely 
satisfied. Once Am, B., and C. are obtained from (27), (29), and (31), the steady-state stresses 
are totally defined and given by (26). 

5. Stresses Due to the Transient Part of the Temperature Variation 

T"(r, z, t) of (11) is first expanded into a Bessel-Fourier series as follows: 

T"(r,z, t)= ~ ~ T,.,(t)Fo(2,.r)cosa, z 
, . = 1  n = l  

where 

2 (b f , ,  Tm"(t) = h{b2 rg(2,.b)-a2 V2(2,.a)} J. Joh rT"(r, z, t)Fo(2,.r ) cos a.zdrdz 

(34) 

4 ~ fi2 exp [ -  (fl~ + a2)zt ] { Ti Jo (fls b)-  T ~ Jo (fls a) } 
b2 F2(2,.b)-a2F~(2m a) s = l  (f12 +~2)(f12-22){J~(flsa)-J~(flsb) } 

• { Jo( sa) o(2ob) - Vo(2,.a)Jo( sb)} (35) 

Then the thermoelastic displacement potential is assumed to be 

~"(/",z,t) = ~ ~ (p"n(t) Fo(2"r lcoso~nZ.  
m = l  n = l  

Substitution of (34) and (36) into (3) results in 

Tm.(t) k 
C~m,(t ) -- 22 +~n 2 " 

Stresses due to ~"(r, z, t) are computed from (5). 

6'r'~ = -2Gk z z 2 , . - -  + ~,ZF0(2,.r cos ~,z 
, . = 1  n = l  2,.-~'O~n ~" 

(36) 

(37) 
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 zz-" = - 2Gk 
" = 1  

6'0'o = - 2Gk ~ 
m = l  

= - 2Gk (~rz 
m = l  

22 T~,(t) 
Z Fo(2,.r) cos 

. = 1  

Tm"(t) I -  Fl (2m r ) ] 
2 , .  - cos .  

n = l  2m-~- O~ n r 

2mO~"Tmn(t) 
2 2 F1 (2~r) sin ~,z .  

n = l  2m -{- O~n 
(38) 

The Love function may be assumed to be 

T'(r ,  z, t) = ~ [A~'(t) Ta,(r, z )+B;( t )  T2,(r, z)+C;(t)  T3,(r , z)] (39) 
n = l  

where TI,,  T2,, and T3, are given by (22), and A~', and B;', and C~' are functions of time. Analytic 
expressions of these functions in general are not obtainable, but they may be determined nu- 
merically. The stresses corresponding to T"(r, z, t) can be computed from (6) and will be 
denoted by 3'i)(r, z, t). Then the total transient stresses, i,e., stresses corresponding to T'(r,  z, t), 
will be 

a'i) (r, z, t )= 6'i~ (r, z, t)+ a'{j (r, z, t) . (40) 

The a'i} decrease as time increases, and are negligible when time becomes fairly large. 
Since the total stresses in the cylinder are 

~Tij(r , z, t )=  a'ij(r, z)+ a'i)(r, z, t) (41) 

and both a~j and a'ij vanish on the boundary, it follows that the a'i~ must also satisfy (14)-(16). 
It is noted that a'/z vanishes on the boundary because of the way ~b" and T" have been construct- 
ed. Then only the second equations of (14)-(16) remain to be fulfilled and they are used to 
determine A", B", and C". Equations similar to (27), (29), and (31) will be obtained by satisfying 
a"'rr ta, z, t) = 0, Gr" (b, z, t)= 0, and a'z'z (r, _+ h, t)= 0, respectively. They are as follows: 

,, 0 ,, ~,, Tmn(t) ~2 Fo(2ma ) Pnm Fo (2,. a) A,. (t) + Qn Bn (t) + R ~ C" (t) = 2 2 2 

m = l  m = l  2m-~-O~n 

n :  1,2,3 . . . .  (42) 

Vo (Am b) P.,, Vo (Am b) A~ (t) + O. B~' (t) + R. C'.' (t) = 2 2 + ~2 
" = 1  m=J.  2m 

n = 1, 2, 3 . . . .  (43) 

[ 2g ro.(t)(- 1)" 22,,h ] A~,(t) + [ Q " , B 2 ( t ) + R , , , C ; ( t ) ] ( - 1 ) " = 2  
1 + sinh 22mhJ 2 2 n = l  n = l  2m-~-O~ n 

m : 1, 2, 3 . . . .  (44) 

Time appears in equations (42) (44) as a parameter. These equations can be solved for any 
particular time. Hence, functions A", B", and C" can be evaluated numerically. Once they are 
determined, the transient stresses a'i} corresponding to the temperature variation T" will be 
completely defined. 

6. Numerical Examples 

To illustrate the procedure presented in the previous sections, two numerical examples are 
given. All the computations have been performed with the aid of an IBM 360 computer. 
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1. A Hollow Cylinder Heated on the Inner Surface 

Only stationary stresses are considered. The temperature of the inner surface of the cylinder 
�9 0 is kept constant (To). All the Fourier coefficients in (7) vanish except T 0 ; Ti, = T, - 0, n = 1, 2, 3, 

T o = 0, and i .... To = To. The steady-state temperature becomes simply 

T ~ (r) = T O log (b/r) / log (b/a). (45) 

Now (27), (29), and (31) can be solved simultaneously to yield values of A,, B,, and C, and thus 
T '  is determined. Then stresses are obtained according to (26). 

For a long cylinder, stresses at sections not too close to the end have been given by Timoshenko 
[13]. If the cylinder has a small height-to-diameter ratio, the stresses obtained for a cylinder 
cease to be accurate at any cross section because of the end effect. Thus the variations of 
stresses, obtained with the procedure presented in this paper, at section z = 0 (the middle cross 
section) are shown in Fig. 1 and Fig. 2 for a cylinder with a/b = 0.3, v = 0.3 and various h/b. 

The axial stresses a'~z, at the section z = 0 are plotted in Fig. 1. It can be seen that the axial 
stress decreases as the ratio h/b decreases. This fact shows the tendency that the state of stress is 
approaching that of plane stress where the axial stress is very small if not vanishing. On the 
other hand, the axial stress approaches to that given by the long cylinder solution when h/b 
becomes greater than 1.5. 

The circumferential stresses a'oo, also the section z = 0, are plotted in Fig. 2. When h/b > 2, 
the aoo given by the present method is indistinguishable from that given by Timoshenko 
solution. However, unlike the cr'zz , the a'oo doesn't  approach the aoo of the state of plane stress 
monotonically as h/b decreases. The compression on the inner surface and the tension in the 
outer surface seem to attain their maximum values respectively when the ratio h/b is some- 
where between 0.5 and 1.5. 

UZZ 
E~T 0 

- 1 . 2  

- 0 . 8  

- 0 . 4  

0 . 0  

0 . 4  

@ a/b = 0.3 

v =0.3 
_ h = 1 . o  

b 

.75 

.50 

@ Tirnoshenko s o l u t i o n  

and h/b > 2 

�9 r 

_ _ , ~  I I t t t I i I 
! 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

r/b 

Fig. 1. D i s t r i b u t i o n  of  axia l  stresses a t  sec t ion  z = 0 of  a h o l l o w  cy l inde r  wi th  c o n s t a n t  t e m p e r a t u r e  T O on  the inne r  

sur face  a n d  zero  t e m p e r a t u r e  o n  the  o u t e r  surface.  
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oeO 

E~T 0 

-1.2 

-0.8 

-0.4 

0,0 

0.4 

= 1.0 

I=1.5 

/ h/b = 0.4 a/b = O.B 

v =0.3 

--j 

@ Timoshenko solution 

and h/b > 2 

. r  

h / ~== 0 . 4  

h 
/~=i.o 

h ~ / ~  = 1.5 
/ @ 

[ 1 I I I I I I 
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

r/b 

Fig.  2. Distribution of circumferential stresses at section z = 0 of  a hol low cylinder with constant temperature T O on 
the inner surface and zero temperature on the outer surface. 

These  variat ions of  the circumference stresses and the axial stresses are apparently in agree- 
ment  with the o f ten-made  assumpt ion  that the end effects are negligible at a distance of  one  
diameter from the end. 

2. Cylinder Heated Over a Band on the Middle Portion of the Outer Surface 

Only the steady-state stresses will be given. The thermal  boundary  condi t ions  for this case are 

T (a, z) = 0 (46) 

T (b, z) = To,  0 < I z 1< c (47) 

= 0 ,  Izl > c  

where  T o is a constant  and c/h = 0.125. The Fourier  coefficients in (7) will n o w  have the values  

T i . = 0  n = 0 , 1 , 2  . . . .  

TO _- 1 f +h T(b, z ) c o s  e . zdz  = 2T~ sin (n~c/h) n = 1, 2, 3, (48) 
- h  n - 7  "'" 

T o -- 0.125 To. 
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~ 

GBT 0 

0.16 

0.12 

0.08 

0.04 

0.00 

-0.04 

-0.08 

c 
zz 

h/b  = 1.0 

a / b  = 0 .5  

c / h  = 0.125 

v = 0.3 

= (i C + (7 v 

ZZ zZ 

f ~z 

- -  \ 

__+1 I I I I I 
0.5 0~ 0.7 0.8 0.9 1.0 

r/b 

Fig. 3. D i s t r ibu t ion  of axial  stresses a t  sect ion z = 0 of a ho l low cyl inder  when  the middle  por t ion  of the outer  surface 
is hea ted  to m a i n t a i n  a cons tan t  t empera tu re  (To) band  of width  2c. 

The results of computation are presented in Fig. 3 8. The total steady-state stresses are 
separated into two parts: the alj corresponding to T'(r, z) and the a~ corresponding to T% 
which is independent of z; i.e., a~j=a'ij+~ @ Since the section z = 0  is most critical, stress 
variations along it are shown in Fig. 3-5. It can be seen that the oJj contributes more significantly 
to the a~i than the a~j does and that the circumferential stress a00 is much larger compared to 
either the axial stress or the radial stress. Hence variations of the circumferential stress a;0 
along different longitudinal sections are shown in Fig. 6-7; the a~oo remains constant along any 
longitudinal section. The sudden jump of a;0 at z/h= 0.125 on the outer surface is due to the 
discontinuity of the surface temperature. A similar jump has been observed in the solution of 
stresses in an infinite solid cylinder heated over a band [14]. 

7. C o n c l u d i n g  R e m a r k s  

The procedure presented in this paper may be used to determine directly thermal stresses in a 
finite cylinder with temperature prescribed on the curved surface and no surface tractions. 
All the boundary conditions as well as the governing differential equations can be satisfied. 
Although only the solution with symmetry in z has been given, the anti-symmetric part can be 
similarly formulated [15] with no difficulty. 

It is noted that the steady-state solution given here reduces to that for a solid cylinder given 
by Iyengar [-8] when the inner radius approaches zero [15]. The Love function may also be 
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0 . 4  

0 . 2  

\ = , + c 

% 0  ~ ~  

eO0 
GBT 0 

0.0 

-0.2 

-0.4 

-0.6 

h / b  = 1 , 0  

a / b  = 0 . 5  

c / h  = 0 . 1 2 5  

v =0.3 

- 0 . 8  

! 
I I I I I 

I I  0 . 5  0 . 6  0 . 7  0 . 8  0 . 9  1 . 0  

r / b  

Fig.  4. Distribution of circumferential stresses at section z - 0 of  a h o l l o w  cy l inde r  when the middle portion of the outer 
surface is heated to maintain a c o n s t a n t  t e m p e r a t u r e  (To) b a n d  of  w i d t h  2c. 

used in the solution of the end problem of a finite hollow cylinder in isothermal elasticity. 

Appendix 

The function Fo (2z r ) :  Jo ()~ r) + #~ Yo (2~ r) is the solution of the differential equation 
d 2 y 1 dy 
dr  2 + - + 22y  = 0 (A.1) r Z r  

with the boundary conditions 

dy 
dr O, r = a and r = b. (A.2) 

Thus F 0 (2~ r) form a complete orthogonal set i.e., 

f b rro(2,r) Vo(2,,r)dr = O, m, l= 
a 

a n d  
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Fig. 5. Distribution of radial stresses at section z = 0 of a hollow cylinder when the middle portion of the outer surface 
is heated to maintain a constant temperature (To) band of width 2c. 
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Fig. 6. Distribution of circumferential stress a~0 at various vertical sections of a hollow cylinder when the middle portion 
of the outer surface is heated to maintain a constant temperature (To) band of width 2c. 
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Fig. 7. Distribution of circumferential stress a~0 at various vertical sections of a hollow cylinder when the middle portion 
of the outer surface is heated to maintain a constant temperature (To) band of width 2c. 

(2 = f ] rFg()ur)dr = �89 { bF o (2,b)} 2 -  �89 {aFo(2la) } 2 . (A.3) 

Hence the functions Io(Gr), rll(O~nr), Ko(%~r), and rK1 (~.r) may be represented as 

I o (~,, r) = i I~ Fo (2t r), 
I=1 

= Z ;,,',to r), 
/= i  

Ko(%r) = i K~ 
/=1 

rKl(~ i i ( 1 . 4 )  = g. Fo(4r), 
/=1 

where 

i o =  1 .i b n rlo(~.r) ro(~'r) dr - f 2 ( a 2 + 2 2 ) { b F o ( 2 , b ) l l ( a . b ) - a F o ( 2 t a ) I i ( a . a ) } '  
a 

i~ l= 1 ]b r 2 I1 (a. r) Fo (2t r) dr 
a 

0~ n 
- Q (a 2 + 22 ) {b 2 I o (a. b)Vo (2t b ) -  a 2 I o (a. a)Fo (2t a)} 

2~2 {bFo (2z b) I, (~. b ) -  aFo (2z a) 11 (a. a) } a + 
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KO ~ = 1 r | b  
J rK o (% r) Fo (2t r )  dr 

a 

_ ct~ [_bFo(2~b)K~(e.b)+aFo(2~a)Ka(c~.a) ] 

Kll = 1 ~b 3 r2Kl(a"r)F~ 
a 

_ ~,, {_b2Ko(c~,b)Fo(2zb)+a2Ko(c~na)Fo(21a)} 

2% {_bFo(2tb)Ka(e.b)+aVo(2;a)Kt(e.a)} " + 

(A.5) 
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